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Phonon and electron transport in Bi2Te3 has been investigated using a multiscale approach, combining the
first-principles calculations, molecular dynamics �MD� simulations, and Boltzmann transport equations
�BTEs�. Good agreements are found with the available experimental results. The MD simulations along with
the Green-Kubo autocorrelation decay method are used to calculate the lattice thermal conductivity in both the
in-plane and cross-plane directions, where the required classical interatomic potentials for Bi2Te3 are devel-
oped on the basis of first-principles calculations and experimental results. In the decomposition of the lattice
thermal conductivity, the contributions from the short-range acoustic and optical phonons are found to be
temperature independent and direction independent, while the long-range acoustic phonons dominate the pho-
non transport with a strong temperature and direction dependence �represented by a modified Slack relation�.
The sum of the short-range acoustic and optical phonon contribution is about 0.2 W /m K and signifies the
limit when the long-range transport is suppressed by nanostructure engineering. The electrical transport is
calculated using the full-band structure from the linearized augmented plane-wave method, BTE, and the
energy-dependent relaxation-time models with the nonparabolic Kane energy dispersion. Temperature depen-
dence of the energy gap is found to be important for the prediction of electrical transport in the intrinsic
regime. Appropriate modeling of relaxation times is also essential for the calculation of electric and thermal
transport, especially in the intrinsic regime. The maximum of the Seebeck coefficient appears when the
chemical potential approaches the band edge and can be estimated by a simple expression containing the band
gap. The scatterings by the acoustic, optical, and polar-optical phonons dominate the electrical conductivity
and electric thermal conductivity.
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I. INTRODUCTION

Efficient solid state energy conversion devices based on
the thermoelectric �TE� effects, i.e., the Peltier effect for
cooling and the Seebeck effect for power generation, have
great application potential and economic benefits in many
areas. However, present TE devices have a very low effi-
ciency, which is directly limited by the performance of TE
materials. The search into the fundamentals and improve-
ment in TE transport phenomena continues. The performance
of TE materials is presented by the dimensionless figure of
merit �ZT�,

ZT = �S
2�eT/�ke + kp� , �1�

where �S is the Seebeck coefficient, �e is the electrical con-
ductivity, T is the temperature, and ke and kp are the electric
and lattice thermal conductivities, respectively. Identifying
and designing materials with high ZT has proven to be very
challenging. Currently, the best bulk commercial TE materi-
als for applications near room temperature are still the com-
pounds based on Bi2Te3, with ZT near 1. Bi2Te3 exhibits
many typical features of a good room-temperature TE mate-
rial, such as a narrow band gap, high density of states near
the band edges, and low total thermal conductivity. Under-
standing phonon and electron transport in Bi2Te3 is impor-
tant in the design and optimization of TE materials.

Bulk Bi2Te3 has a rhombohedral lattice structure that be-

longs to the space group D3d
5 �R3̄m� and contains five atoms

along the trigonal axis in the sequence of Te1-Bi-Te2-Bi-Te1

�Fig. 1�. At 293 K, the rhombohedral unit-cell parameters1

are aR=10.473 Å and �R=24.159°, and the corresponding
hexagonal unit-cell parameters are a=10.473 Å and c
=30.487 Å. In the rhombohedral structure, the fractional co-
ordinates for Te1 atoms are designated as ��u , �u , �u� and
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FIG. 1. �Color online� Crystal structure of Bi2Te3 showing both
the rhombohedral and hexagonal unit cells. The first Brillouin zone
for the rhombohedral cell and some symmetry axes and k points are
also shown. The hexagonal structure is made of Te1-Bi-Te2-Bi-Te1
five-layer blocks.
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those for Bi as ��v , �v , �v�, where u and v at 293 K have
been found2 to be 0.4001 and 0.2095. In the hexagonal unit
cell �Fig. 1�, it is apparent that Bi2Te3 has a lamella structure
made of Te1-Bi-Te2-Bi-Te1 blocks. The bond length of the
Te1-Bi bond is 3.07 Å shorter than that of the Bi-Te2 bond
�3.25 Å�, indicating that they may be of different bond types;
the Te1-Te1 bond is the longest �3.64 Å� and is believed to
be a van der Waals interaction, which responds to the ease of
cleavage along the planes.1,2 We denote the direction along
the c axis �cross-plane direction� as “�” and the in-plane
direction as “�.”

Significant experimental characterization efforts1–9 on
Bi2Te3 and some ab initio calculations and theoretical
treatments3,5,10 have been reported. However, theoretical
treatments for both the phonon and electron transport in
Bi2Te3 are rare, especially for the lattice thermal conductiv-
ity. The difficulty has been due to the different physical fea-
tures of phonon and electron transport, and a multiscale ap-
proach is required for such investigations.

In order to systematically study the relationship between
the TE properties and the structural features and to under-
stand the transport mechanisms in TE materials, we develop
a comprehensive strategy to calculate all the TE transport
properties ��S, �e, ke, and kp�. In this strategy, first-principles
calculations based on density functional theory �DFT�, mo-
lecular dynamics �MD� simulations, and Boltzmann transport
equation �BTE� are combined to calculate the TE transport
properties of Bi2Te3. Below, we first report the classical in-
teratomic potentials for Bi2Te3 developed on the basis of
DFT energy calculations. With these potentials, the lattice
vibrations are analyzed using MD simulations. Then, the lat-
tice thermal conductivity along the in-plane and cross-plane
directions are calculated in a temperature range from
150 to 450 K using MD combined with the Green-Kubo
�GK� autocorrelation decay method. For an electric transport,
we start with the first-principles band structure calculations
and the modeling for the chemical potential. Then, the elec-
tric transport properties ��S, �e, and ke� are determined using
BTE with the appropriate modeling of the relaxation time
and chemical potential between 100 and 500 K. The calcu-
lated results are in reasonable agreement with the experi-
ments, noting that the experiments inherently contain various
defects.

II. PREDICTION OF PHONON CONDUCTIVITY

There are two common theoretical approaches in the in-
vestigation of phonon transport in solids. One is the con-
tinuum transport theory �or kinetic theory�, such as BTE,11,12

which is suitable for fast calculations of large systems. How-
ever, this normally needs some parameter input from experi-
ments or other predictions; therefore, its application is lim-
ited. The other is the atomistic technique, such as MD
simulations. Unlike BTE, MD only requires material struc-
tures and suitable interatomic potentials. In a sense, MD is
more fundamental and can provide insight into the lattice
dynamics at the atomic level. Also, MD allows for decom-
posing different transport mechanisms and is therefore cho-
sen here.

A. Interatomic potentials

Suitable interatomic potentials are essential for modeling
the lattice dynamics of Bi2Te3 in the MD simulations.
Though there are already some simple harmonic potentials
fitted using the experiments in the literature,3,5 they are not
suitable for the calculation of lattice conductivity due to the
omitted anharmonic effects. Here, the interatomic potentials
involving the anharmonic terms have been developed by fit-
ting the energy surface from the ab initio calculations. The
ab initio energy surface scan is normally carried out by con-
sidering only small isolated clusters. This approach is valid
only when the interatomic interactions in a real crystal are
mainly of short range. However, long-range interactions,
e.g., van der Waals interactions, may be important in deter-
mining the structure and dynamics of Bi2Te3.3 Therefore, a
crystal structure with a periodic boundary condition was
adopted in the energy surface scan.

The ab initio calculations were performed with the
QUANTUM-ESPRESSO package13 within the DFT framework
using a plane-wave basis set and pseudopotentials adopting
the Ceperley-Alder local density approximation �LDA� with
Perdew-Zunger data. A cutoff energy of 50 Ry was used, and
the spin-orbit coupling was included. The energy surface of
Bi2Te3 was scanned by changing the bond lengths and
angles. Both a rhombohedral primitive cell and a hexagonal
representation were used in the scan. The classical potentials
with predetermined forms were first fitted to these data using
the GULP code.14 Then, the crystal structure and other prop-
erties such as the elastic constants were calculated by imple-
menting those potentials in the GULP package and compared
with experimental results. Such procedures iterated until
convergent results were achieved. Note that the DFT with the
generalized-gradient approximation �GGA� or LDA cannot
describe the true long-range van der Waals interactions.15

Though recent developments15 have seamlessly included van
der Waals interactions in DFT, the solutions are not very
simple and are unavailable in most present DFT codes. In
this work, the van der Waals interactions were first param-
etrized by fitting the energy surface scanned by QUANTUM-

ESPRESSO and subsequently refined by fitting to the structure
and elastic constants. In the fitting with the energy surface,
we adopted the atomic charges fitted by Kullmann et al.5 The
final forms of the interatomic potentials are listed in Table I.

It is interesting to note that the Te1-Bi bond has a higher
bond energy and a higher force constant than the Te2-Bi
bond. Also, its potential has a larger spatial variation than the
Te2-Bi bond, showing a stronger bond anharmonicity. This
indicates that the Te1-Bi bond is more ionic than the Te2-Bi
bond. The Te1-Te1 bond, which is commonly considered as a
van der Waals interaction, has a bond energy �o
=0.0691 eV, lower than that of a typical ionic or covalent
bond but much higher than the bond energy of the Xe-Xe or
Kr-Kr van der Waals interaction �for Xe-Xe, �o=0.014 eV,
and for Kr-Kr, �o=0.02 eV�,16 which has a close filled-shell
atomic radius. Also, the force constant � of Te1-Te1 at the
equilibrium site is 10.45 N /m, which is also much larger
than those of Xe-Xe ��=0.96 N /m� and Kr-Kr ��
=1.15 N /m�.16 This value agrees well with the results of
Jenkins et al.3 ��=9.83 N /m� and Kullmann et al.5
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�7.98 N /m�. The large bond energy, the force constants, and
the large spatial variation of the Te1-Te1 interaction indicates
that the Te1-Te1 �excluding electrostatic interaction� interac-
tion may be special. As will be discussed in Sec. III A, the
interatomic bonds in each quintuple layer are primarily the
pp� interactions.

We applied these potentials in the GULP package to opti-
mize the structure �energy minimization�. The resulting c and
a values at 0 K are listed in Fig. 2, compared with the values
measured17 at 4 K. Since structure parameters at low tem-

peratures are unavailable, we also used MD to obtain the
average bond lengths and angles in a freestanding structure
at 300 K, and the comparisons with the experimental results
measured1,2 at 293 K are shown in Fig. 2. The overall agree-
ment is good �the average deviation from the measured data
is less than 1%�. The calculated Te1-Te1 bond length at 0 K
�not shown� in the crystal is 3.62 Å, shorter than the equilib-
rium bond length parameter 3.64 Å listed in Table I. This
indicates that the repulsion between the adjacent two Te1
layers is overwhelmed by the electrostatic interaction be-
tween the distant Bi and Te1 layers in two neighboring
blocks. However, at high temperature, as shown in Fig. 2, the
attraction between the two adjacent Te1 layers originates
from both the electrostatic interaction and the weak Te1-Te1
bonds. The combination of the electrostatic interaction and
the strong van der Waals interaction makes the net Te1-Te1
interaction behave as an ionic bond.

The elastic constants �the elastic modula C��, bulk modu-
lus Ep, and Young modulus EY� of the optimized structure are
also calculated using the dynamical matrix approach imple-
mented in the GULP package. In performing the lattice dy-
namical calculation, the Cartesian reference axis is chosen to
be the same as that in Ref. 3. The calculated results apply to
0 K. Table II compares the elastic constants of the optimized
structure with the experimental data at different
temperatures.3,5 Except for C13, our data for the optimized
structure at 0 K agree quite well with the elastic constants at
0 K measured by Jenkins et al.,3 and the average deviation
from the measured values is less than 10%. We also calculate
the elastic constants of a freestanding structure at 300 K. As
shown in Table II, the changes of the elastic constants 	C��
agree quite well with the experiments. This indicates that
these potentials can be used to describe the harmonic behav-
iors of Bi2Te3 over a wide temperature range. Also, note that
C11 is only slightly larger than C33 because of the high
force constant of Te1-Te1 bonds, which shows weak aniso-
tropy in the elastic properties of the layered Bi2Te3 structure.

The umklapp processes, in which the phonon momentum
is changed by a reciprocal lattice vector, dominate the lattice

TABLE I. The interatomic potentials �excluding the electrostatic interactions� for Bi2Te3. Here, r and � are the interatomic separation
distance and bond angle, respectively. The cutoff radius of the electrostatic terms is 12 Å. The atomic charges of Te1, Bi, and Te2 are −0.26,
0.38, and −0.24, respectively �Ref. 5�.

Interaction Potential Model Parameters

Pair

Te1-Bi �adjacent layers� �o��1−exp(−a�r−ro�)�2−1� �o=0.974 eV, a=1.2848 Å−1, ro=3.10 Å

Te2-Bi �adjacent layers� �o��1−exp(−a�r−ro�)�2−1� �o=0.5801 eV, a= 1.2537 Å−1, ro= 3.235 Å

Te1-Te1 �adjacent layers� �o��1−exp(−a�r−ro�)�2−1� �o=0.0691 eV, a= 2.174 Å−1, ro=3.64 Å

Bi-Bi �same layer� �o��1−exp(−a�r−ro�)�2−1� �o=0.085 eV, a= 1.93 Å−1, ro=4.18 Å

Angular

Te1-Bi-Te1 �adjacent layers� 1
2���cos �−cos �o�2 ��=0.56 eV, �o=90°

Bi-Te1-Bi �adjacent layers� 1
2���cos �−cos �o�2 ��=1.31 eV, �o=90°

Te2-Bi-Te2 �adjacent layers� 1
2���cos �−cos �o�2 ��=1.47 eV, �o=85°

Bi-Te2-Bi �adjacent layers� 1
2���cos �−cos �o�2 ��=1.47 eV, �o=85°

Te2-Bi-Te1 �three adjacent layers� 1
2���cos �−cos �o�2 ��=1.16 eV, �o=92°

Bi-Te2-Bi �three adjacent layers� 1
2���cos �−cos �o�2 ��=1.18 eV, �o=95°
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FIG. 2. �Color online� Comparison of the structure parameters
calculated by the model at 300 K with those �Refs. 1 and 17�
�shown in the parentheses� from experiments at 293 K. The calcu-
lated lattice parameters at 0 and 300 K, together with the experi-
mental results �Refs. 1 and 17�, are also shown.
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thermal conductivity of crystalline materials at normal and
high temperatures �typically above 1 /3–1 /2 of the Debye
temperature�. This intrinsic resistive process results from the
anharmonicity of the interatomic potentials in solids. Its
strength depends on both the available phonon phase and the
phonon-phonon scattering matrix, which are, in turn, deter-
mined by the harmonic force constants and anharmonicity of
the interatomic potentials, respectively.18 Therefore, we
chose the Grüneisen parameter and the linear thermal expan-
sion coefficients to check the anharmonicity of the inter-
atomic potentials before applying them in the thermal con-
ductivity calculations.

The mode Grüneisen parameter 
G,�,s describes the rela-
tive shift of phonon frequency of the mode ��, s� with the
change of the volume and is defined as


G,�,s = −
V

�s���
��s���

�V
, �2�

where the mode is denoted by the wave vector � and the
branch identifier s, � is the angular frequency, and V is the
volume. The overall Grüneisen parameter is defined as


G =
��,s
�,�cv,s���

��,scv,j���
,

cv,s��� =
��s���

V

�

�T
	 1

e��s���/kBT − 1

 =

�Ep

cv
, �3�

where cv,s��� is the contribution of the mode ��, s� to the
volumetric specific heat cv, and � is the volumetric thermal
expansion coefficient. To calculate the volume dependence
of the phonon frequencies in Eq. �2�, we used GULP to cal-
culate the volume of a hexagonal unit cell under different

hydrostatic pressures p by minimizing the enthalpy of the
system. With the resulting structure, the phonon frequency at
each � point was recalculated by diagonalizing the corre-
sponding dynamical matrix �a 6
6
6 � mesh was used�.
The Grüneisen parameter was then calculated from the
changes in the phonon frequencies and listed in Table III.

The linear thermal expansion coefficient �� was obtained
from the elastic compliance coefficient Sij and from the gen-
eralized Grüneisen parameters, which are defined as19


G,�� =
��,s
�,�,s� cv,s���

��,scv,s���
, 
G,�,�,s� = −

1

�s�

��s���
���

, �4�

where �� is a uniform areal strain along the � direction. The
linear thermal expansion coefficients of a hexagonal crystal
can be obtained from19

�� = ��S11 + S12�
�� + S13
�� �cv, �5�

�� = �2S13
�� + S33
�� �cv. �6�

The corresponding volumetric thermal expansion coefficient
� is

� = 2�� + ��. �7�

The calculated results and those from experiments at T
=300 K are also listed in Table III.

From Table III, the calculated anharmonic properties
agree well with the experimental results. Therefore, we
would expect this set of interatomic potentials to provide a
reasonable prediction for the lattice thermal conductivities.

Since Bi2Te3 is a highly anisotropic layered structure, to
characterize the anharmonicities along different polariza-
tions, similar to Eq. �3�, we can also define a polarized Grü-
neisen parameter,

TABLE II. Comparison of the calculated elastic modula C��, bulk modulus Ep, and in-plane Young
modulus EY �in GPa� with experimental results �Refs. 3 and 5�.

C11 C13 C14 C33 C44 C66 Ep EY

Ultrasonic experiment �280 K�a 68.5 27.0 13.3 47.7 27.4 23.4 37.4 54.2

Ultrasonic experiment �0 K�a 74.4 29.2 15.4 51.6 29.2 26.2 39.5b

Neutron scattering experiment �77 K�5 76.3 13.2 51.2 30.9 9.9

This study �0 K� 69.0 21.6 12.3 54.8 28.8 26.7 34.4 52.5

This study �300 K� 65.4 19.0 10.9 50.7 26.5 25.7 31.6 51.4

aReference 3.
bcalculated through the bulk modulus relation in Ref. 3.

TABLE III. Comparison of the calculated Grüneisen parameters and thermal expansion coefficients, at
T=293 K, with the experimental results �Refs. 1, 3, and 20�.

Parameter 
G 
G,� 
G,�

�
�10−6 /K�

��

�10−6 /K�
��

�10−6 /K�

Experiment 1.493 48.0,a 44.0b 12.9,a 13.0b 22.2,a 18.0b

Calculation 1.40 1.17 1.86 46.8 12.9 21.0

aReference 1.
bReference 20.
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G,� =
3��Ep

cv
, �8�

which measures the anharmonicity along the � direction and
equates to 
G if the structure is isotropic �
G=��
G,� /3�.
Table III shows that the in-plane Grüneisen parameter 
G,� is
close to the 
G value of an ideal covalent material21 and is
much smaller than the cross-plane Grüneisen parameter


G,�, indicating that the in-plane anharmonic scattering is
much weaker than the cross-plane anharmonic scattering.
The calculated 
G,�, however, is a typical value of an ionic
material, which confirms the conclusion about the Te1-Te1
ioniclike mixed bond.

B. Lattice vibrations

To further investigate the lattice vibrations of Bi2Te3, we
also used the MD simulations to calculate the normalized
total phonon density of states �DOS� �Fig. 3�a�� together with
the atomic partial phonon density of states �PDOS� �Fig. 4�.
The normalized PDOS of the �th species in the � direction,
D

p,�,�
* , is determined by taking the Fourier transform of the

velocity autocorrelation function �1800 ps raw velocity data
were used in the autocorrelation calculation�,22,23

D
p,�,�
* ��� =

� exp�− i�t��u�,��t�u�,��0�
dt

�� exp�− i�t��ui,�,��t�ui,�,��0�
dtd�
, �9�

where u�,� denotes the velocity of an atom of the �th species
in the � direction.

The normalized total phonon DOS is obtained by sum-
ming over the normalized partial DOS weighted with the
species concentration c�,

D
p
*��� = �

�,�
c�D

p,�,�
* ��� . �10�

To obtain the DOS and PDOS, the MD simulations were
run at 300 K, and 1800 ps raw velocity data were used in the
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calculation for the autocorrelation function. The obtained to-
tal phonon DOS is shown in Fig. 3. The generalized phonon
density of states G��� measured at 77 K by Rauh et al.24

using the inelastic neutron scattering and that calculated by
Jenkins et al.3 with the assumed Born–von Karman model
are also shown in Fig. 3. Note that the G��� measured by
Rauh et al.24 is not the conventional DOS because the differ-
ence of the weight factors is significant for Bi and Te. The
cutoff frequency calculated by the MD simulation is
4.7 THz, larger than the value of 4.3 THz calculated by Jen-
kins et al.3 but agreeing well with the value of 4.7 THz mea-
sured by Rauh et al.24 and of 4.55 THz measured by Kull-
mann et al.5 Overall, our DOS results agree fairly well with
that of Jenkins et al.3 In our DOS results, there is a gap
between 2.5 and 2.9 THz, which is mainly determined by the
weak Te1-Te1 bond and the Te2-Bi bond. Neither our model
nor that of Jenkins et al.3 can reproduce the transversal
eigenmode around 1.0 THz. This may be due to the simple
nature of the “rigid-ion” model since the high polarizability
of Te and Bi may significantly influence the dispersion be-
havior of the transverse optical mode. A suitable core-shell
model may account for this problem, which will be investi-
gated in the future.

Figure 4�a� shows the normalized in-plane and cross-
plane phonon DOSs of the entire Bi2Te3 structure and those
of the different species. Overall, the in-plane and cross-plane
phonon DOSs almost overlap, especially when f �3 THz,
and the difference only lies in the high-frequency regime
�f �3 THz�, where the cross-plane spectrum seems to shift a
little toward a relative higher frequency regime. This rough
identity indicates that there is only a minor difference be-
tween the in-plane and cross-plane vibration spectra, which
is consistent with the fact that C11 differs only slightly from
C33. The in-plane and cross-plane PDOSs of the different
species provide more details about the lattice vibration.
When f �1.5 THz, where acoustic vibrations dominate, the
three PDOSs for both directions are almost the same. The Bi
atoms have more modes in the low-frequency regime �f
�2.6 THz� of the PDOS for both directions, but less modes
in the high-frequency regime �f �3 THz� than those of the
Te1 and Te2 atoms. This is due to their larger mass. Overall,
the in-plane PDOSs of Te1 and Bi match each other quite
well, and the difference only exists in a narrow frequency
regime �2.8 THz� f �3.6 THz�. This is believed to directly
result from the strong Te1-Bi bonds. However, most in-plane
vibration modes of Te2 atoms concentrate in the high-
frequency regime �2.8 THz� f �4.6 THz�. The in-plane vi-
bration spectrum of Te1 shows strong peaks between 2.8 and
3.6 THz, where Te1 and Bi have much less vibration modes.
Te2 also has much less vibration modes than Bi and Te1
atoms in the regime between 1.5 and 2.6 THz. All these
show that the correlation between the in-plane optical vibra-
tions of Te2 and Bi /Te1 is weak, while the correlation be-
tween the in-plane vibrations of Bi and Te1 is strong. This
may be due to the relatively weak Bi-Te2 bonds �compared
with Bi-Te1 bonds� and the symmetric position of Te2 atoms
in the five-layer sandwich structure. Similarly, the cross-
plane PDOS of Te2 atoms mainly focuses on the high-
frequency regime �f �2.8 THz�. There are strong peaks be-

tween 3 and 3.6 THz in the cross-plane PDOS of Te2, but
those peaks are rather weak in the PDOS of Te1 and Bi,
indicating the energy localization of those modes. Also, there
are large differences among the cross-plane PDOSs of neigh-
boring Te1 /Bi and Bi /Te2 layers, suggesting that phonon
transporting across the planes will suffer from strong scatter-
ing. Those strong scatterings are mainly due to the mass
difference and the large variation in �
� ��
� is the product
of the force constant � and the bond-scaling parameter 
�� in
the neighboring bonds.21 Figure 4�b� shows the root mean
square �rms� displacement of atoms. The rms’ of the Te2
atoms are isotropic, while the Bi atoms have the largest
cross-plane rms and the Te1 atoms have the largest in-plane
rms.

C. Molecular dynamics simulation procedure and GK
autocorrelation

The thermal conductivity limited by the phonon-phonon
scattering Kp is determined using the GK approach, in which
the thermal conductivity is related to the decay of the heat
current autocorrelation function �HCACF�. The thermal con-
ductivity Kp tensor is given by

Kp =
1

kBVT2�
0

�

�ẇ�t�ẇ�0�
 , �11�

where kB is the Boltzmann constant, V is the volume of the
simulation system, T is the system temperature, and
�ẇ�t� · ẇ�0�
 is the HCACF. A slow-decaying HCACF indi-
cates that the heat current fluctuations can spread over a long
time before vanishing, i.e., a long phonon relaxation time.
The heat current ẇ is defined as

ẇ =
d

dt
�
i=1

N

riEi, �12�

where r and E are the position vector and the energy of a
particle �atom� �excluding the site energy�, respectively.

The MD simulations were performed with a system con-
sisting of 6
6
1 hexagonal unit cells and involving 540
atoms. The simulations with larger systems produced very
similar results. The temperatures considered were from
100 to 400 K, with an interval of 50 K. The time step was
chosen as 10 fs. The Verlet leapfrog algorithm was adopted
for the calculation, while the Nose-Hoover thermostat and
the Berendsen barostat were used to control the system tem-
perature and pressure. The system was first simulated in an
NPT �constant number of atoms, pressure, and temperature�
ensemble for 100–200 ps until it reached a freestanding state
at the desired temperature; then, it was switched into an NVE
ensemble and ran for 200 ps to arrive in equilibrium. At each
temperature point, 1700 ps raw heat current data were ob-
tained for the calculation of HCACFs. After calculating
HCACF, the direct integration method is used to obtain the
thermal conductivity. The integral is averaged to smooth the
behavior in a converged region. The final result is the aver-
age value over the converged region.

To speed up the calculations, the Wolf method25 was
adopted for the calculation of the long-range electrostatic
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interactions. The decay parameter � is chosen to be
0.25 Å−1, and the cutoff radius Rc is chosen to be 10 Å.

D. Phonon conductivities and its decomposition

Figure 5 shows the time variation of the normalized raw
HCACF and the lattice thermal conductivity along the in-
plane and cross-plane directions. The normalization factors
�ẇ��0� · ẇ��0�
 for the two directions only differ slightly
��3% �. The normalized raw HCACF curves in both direc-
tions involve high-frequency components caused by the
high-frequency optical phonons. It is apparent that the fluc-
tuations in the in-plane HCACF are much larger than those
in the cross-plane one. Considering the identity of the nor-
malized vibration spectrum along the two directions, the
high-frequency vibrations along the cross-plane direction are
more likely to be localized. Both HCACF curves consist of
two stages, i.e., an initial rapid decay stage followed by a
relatively slow decay stage, which have also been found for
other crystals.26 It has been shown that the HCACF of a
crystal with a multiatom unit cell can be decomposed into
three parts by fitting the HCACF to a function of the form26

�ẇ��t� · ẇ��0�
 = AA,sh,� exp�− t/�p,A,sh,��

+ AA,lg,� exp�− t/�p,A,lg,��

+ �
i

BO,i,� exp�− t/�p,O,i,��cos��p,O,i,�t� ,

�13�

where �p,i is a time constant, the coefficients A and B repre-
sent the strength of a given mode, and the subscripts sh, lg,
A, and O denote short-range, long-range, acoustic, and opti-
cal contributions, respectively. We used a Fourier low-pass
filter �the cutoff frequency was set at 1.5 THz� to remove the
high-frequency components of HCACF and fitted the low-

frequency acoustic part using the two-term exponential func-
tions. The fitting results are also shown in Fig. 5. At the
beginning, the decay relaxation times for HCACF curves are
almost the same, rather short �0.27 ps�. However, for the
long-range decay, the relaxation time for the in-plane
HCACF is 10.62 ps, which is longer than that for cross-plane
HCACF �7.88 ps�, indicating that the lattice scattering along
the cross-plane direction is stronger. The time variation of
the lattice thermal conductivities shown in Fig. 5 also con-
firms this.

Figure 6 shows the temperature-dependent in-plane and
cross-plane lattice conductivities of Bi2Te3 calculated by the
MD simulations using the potentials listed in Table I. The
available experimental results27 are also shown. Note that the
calculated in-plane and cross-plane kp,�, kp,� are higher than
the experimental results. This is expected, considering the
various defects �e.g., isotopes, displacements, lamellae, etc.�
in a real Bi2Te3 crystal,28 which will reduce the thermal con-
ductivity.

The lattice conductivities in both directions roughly fol-
low the 1 /T law, similar to insulators. The calculated cross-
plane thermal conductivity kp,� is lower than the in-plane
kp,�. Since the average cross-plane sound velocity
�1631 m /s� is very close to the in-plane sound velocity
�1775 m /s�, the difference between the two thermal conduc-
tivities is mainly due to the different anharmonicities along
the two directions. This can be verified by the directional
Grüneisen parameter 
G,� along the � direction. For Bi2Te3,
at 300 K, the in-plane Grüneisen parameter 
G,� is 1.17,
while the cross-plane Grüneisen parameter 
G,� is 1.86. The
large difference in the anharmonicity originates from the
unique bond characteristics in the layered structure �Fig. 1�,
in which the intralayer bonds are mainly covalent but the
interlayer bonds are the hybrids of the electrostatic interac-
tion and the van der Waals interaction.

Figure 5 illustrates the different decay stages and compo-
nents of HCACF. According to Eqs. �11� and �13�, the lattice
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FIG. 5. �Color online� Time variation of the raw HCACF and
the lattice thermal conductivity at T=300 K, for the in-plane and
cross-plane directions. The curve fits of the two-term exponential
functions for the HCACF low-frequency portion are also shown.
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thermal conductivity Kp can then be decomposed into three
parts as

Kp = Kp,A,sh + Kp,A,lg + Kp,O. �14�

Here, Kp,lg,A is believed to be the contribution from the long-
range acoustic phonons, with a mean-free path larger than
one-half of their wavelengths; Kp,sh,A is the contribution from
the short-range phonons, with their mean-free paths
minimized26,29 �Kaburaki et al.30 attributed it to single-
particle motions in a local environment�, and Kp,O is the
contribution from the high-frequency optical phonons. We
obtained Kp,sh,A and Kp,lg,A by fitting the low-frequency part
of HCACF with the two-term exponential functions shown
in Eq. �13� and obtained Kp,O by directly integrating the
high-frequency part of HCACF. The Fourier low-pass and
high-pass filters were used to separate the different compo-
nents. Further details about the decomposition can be found
elsewhere.26,29

Figure 7 shows the variation of the different components
of the in-plane and cross-plane lattice thermal conductivities
with respect to temperature. The results shown are the aver-
age for several data sets. The difference between the summa-
tion of the fitted three components and that specified directly
from the integral is less than 10%. As shown in Fig. 7, for
both the in-plane and cross-plane directions, the long-range
contribution kp,A,lg dominates, and kp,A,sh is relatively small
but still three to four times larger than kp,O. The in-plane
long-range contribution kp,A,lg,� is larger than the cross-plane
long-range component kp,A,lg,�, and the ratio kp,A,lg,� /kp,A,lg,�
varies from 1.55 to 2.17 in the temperature range
150–450 K. Considering the almost isotropic sound velocity
and phonon DOS �Sec. II B�, this difference is mainly attrib-
uted to the different scattering strengths along the two direc-
tions. However, the short-range and optical components are
almost the same in both directions �the in-plane values seem

slightly larger, but the difference is in the error range of the
data�. This seems to indicate that the mean-free paths of both
the short-range and optical phonons are independent of the
scattering mechanisms, and their transport is mainly deter-
mined by the local environment. This conclusion is consis-
tent with the fact that kp,A,sh and kp,O are almost temperature
independent. On the other hand, kp,A,lg decreases with in-
creasing temperature. A power-law fit yields kp,A,lg,� �T−1.03

and kp,A,lg,��T−1.23, and the stronger temperature depen-
dence of kp,A,lg,� may be due to the larger thermal expansion
along the cross-plane direction. In other words, in both the
in-plane and cross-plane directions, kp,A,lg roughly follows
the normal T−1 law for high-temperature lattice thermal con-
ductivities.

In Fig. 7, the lattice conductivity calculated by the Cahill-
Pohl model31 kp,CP is also shown, which is given by

kp,CP = ��

6
�1/3

kBn2/3�
i=1

3

up,g,i� T

TD,i
�2�

0

TD,i/T x3ex

�ex − 1�2dx ,

�15�

where n is the number density of atoms. The lattice conduc-
tivity predicted by Eq. �15� has been interpreted as the mini-
mum solid phase thermal conductivity. In Fig. 7, kp,CP,� is
only slightly higher than kp,CP,�, and both are almost tem-
perature independent in the temperature range between 150
and 450 K. The sum of kp,A,sh and kp,O is about 60% of kp,CP,�

or kp,CP,�. The behaviors of kp,A,sh and kp,O are actually quite
similar. If they are both mainly affected by a local environ-
ment, their sum seems likely to be independent of different
scattering mechanisms unless the local environment �with a
dimension of the order of the interatomic spacing� is
changed. In other words, this provides a lower limit of the
phonon conductivity for structure engineering, which is
0.2 W /m K at 300 K.

By assuming that heat was mainly carried by the acoustic
phonons scattered via the three-phonon processes, Slack32

proposed a simple relation for the thermal conductivity of
crystals with constant volume at high temperatures

kp,S =
3.1 
 104�M
Nc

1/3�TD,�
3

T�
G
2 


. �16�

Here, �M
 is the mean atomic weight of the atoms in the
primitive cell, �3 is the average volume per atom, Nc is the
number of atoms in a primitive cell, and TD,� is defined from
the phonon DOS Dp,32 i.e.,

TD,�
2 =

5hP
2

3kB
2

�0
�f2Dp�f�df

�0
�Dp�f�df

, �17�

where hP is the Planck constant and f is the phonon fre-
quency. Note that the integral is only over the acoustic por-
tion of the phonon spectrum. TD,� is generally close or
slightly lower than the Debye temperature for the acoustic
branches TD /Nc

1/3 �TD is the Debye temperature�.
Slack mainly applied this relation for isotropic crystals

with a cubic structure. However, as discussed in Ref. 21, if
the long-range phonons dominate the heat transfer, their con-
tribution may still have a form very similar to Eq. �16�;
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FIG. 7. �Color online� Decomposition of calculated in-plane and
cross-plane thermal conductivity. The lowest in-plane and cross-
plane thermal conductivities calculated by the Cahill-Pohl model
are also shown.
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therefore, it is possible to modify this relation and apply it
for anisotropic crystals. Assuming that the scattering of
phonons along the � direction is only related to the elastic
and anharmonic properties along this direction, that is, the
transport of phonons along this direction is similar to the
transport in an isotropic structure with the same elastic and
anharmonic properties, then we extended Eq. �16� as

kp,S,� =
3.1 
 104�M
Nc

1/3�TD,�,�
3

T
G,�
2 , � = � or � . �18�

Here, TD,�,� is given by Eq. �17� while replacing Dp��� with
Dp,����. As discussed in Sec. II B, the total in-plane and
cross-plane PDOSs are almost the same, and the calculation
according to Eq. �17� provides TD,�,� =76 K and TD,�,�
=75 K. Using 
G,� =1.17 and 
G,�=1.86 calculated in Sec.
II A, the in-plane and cross-plane long-range components
�denoted as kp,A,lg,� �Slack� and kp,A,lg,� �Slack�� were calcu-
lated by Eq. �18� and are also shown in Fig. 7. Overall, these
results are in reasonable agreement with those decomposed
from the MD simulations in both directions �the average de-
viations from the MD results are within 30% for kp,A,lg,� and
20% for kp,A,lg,��.

E. Role of phonon-electron scattering in phonon conductivity

In semiconductors, phonons are scattered by grain bound-
ary, defects, other phonons, and carriers. According to the
Matthiessen rule, the total thermal resisitivity can be repre-
sented as

1

kp
=

1

kp,b
+

1

kp,d
+

1

kp,U
+

1

kp,c
, �19�

where kp,b, kp,d, kp,U, and kp,c are the thermal conductivity
limited by the scattering of grain boundary, defects, phonon-
phonon U process, and carriers, respectively.

The thermal conductivity limited by phonon-carrier scat-
tering kp,c can be estimated using the electrical resistivity �e.
Their relations have been derived by ignoring the difference
between the N and U processes between carriers and
phonons,33,34 as in

1

kp,c
=

A

NLT
�TD

T
�I5

�2ze
2

27I4
2 , �20�

�e = A� T

TD
�5

I5, �21�

where

In = �
0

TD/T xnex

�ex − 1�2dx . �22�

In the above relations, ze is the number of free electrons per
atom, NL the Lorenz constant, and A is a constant �for metals,
A=3.7�. Then, we have

1

kp,c
=

�e

NLT

�TD/T�6

27I4
2 �2ze

2. �23�

When T /TD increases from 0.1 to 10, �TD /T�6 / I4�TD /T�2 de-
creases from 97 to 9. Also, for a normal dopant concentration
��1019 cm−3�, ze is of the order of 10−3. Then, for a wide
temperature range �0.1�T /TD�10�, 1 /kp,c is only about
10−4 of the electrical thermal resistivity 1 /ke found from the
Wiedemann-Franz law; therefore, it is negligible for most
semiconductors �including Bi2Te3�.

III. PREDICTION OF ELECTRONIC PROPERTIES

The thermoelectric transport properties can be derived
from BTE with the relaxation time approximation. The gen-
eral form of the relations for TE properties is35

�e,���Ee� =
1

N
�
i,�

ec
2�e,i,�u��i,��u��i,��

��Ee − Ee,i,��
dEe

,

�e,�� =
1

V
� �e,���Ee�	−

�f��T;Ee�
�Ee


dEe,

v�� =
1

ecTV
� �e,���Ee��Ee − ��	−

�f��T;Ee�
�Ee


dEe,

�S,�� = ��e
−1� j�ve,j�

k��
o =

1

ec
2TV

� �e,���Ee��Ee − ��2	−
�f��T;Ee�

�Ee

dEe,

ke,�� = k��
o − Tv�j��e

−1�ljvl�, �24�

where �S is the Seebeck coefficient, �e is the electrical con-
ductivity, ke is the electrical thermal conductivity, i is the
band index, �e is the relaxation time, ec is the charge of
electron, � is the wave vector, u is the group velocity, f
= �e�Ee−��/�kBT�+1�−1 is the equilibrium Fermi-Dirac distribu-
tion function, � is the chemical potential, and Ee is the total
energy of electron. Accordingly, the band structure Ee�i ,��,
chemical potential �, and relaxation times �e are required
inputs for the electronic property calculations.

A. Electronic band structure of Bi2Te3

The band structure calculation for Bi2Te3 was carried out
in the DFT framework. The WIEN2K Program,36 which em-
ploys the full potential, linearized augmented plane-wave
and local orbital methods, was chosen for this investigation.
The GGA as proposed by Perdew et al.37 was used for the
exchange and correlation potential. The experimental rhom-
bohedral cell parameters of a=10.48 Å and 24.16° and the
atomic parameters1,2 u=0.4001 and v=0.2095 at T=300 K
were used in the calculations. The radii of both Bi and Te
atoms were set at 2.8 a.u. An R ·�max value of 9 and a Gmax
value of 14 were adopted, and a nonshifted mesh with
10 000 � points were used. The energy cutoff between the
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core and valence states was set at −6 Ry. Because of the
significant spin-orbit �SO� effects on the band structure of
Bi2Te3, the eigenstates below 10 Ry were considered in the
SO calculations. As suggested by Larson,38 the p1/2 correc-
tions may significantly affect the band structure; therefore,
the p1/2 corrections have also been considered for the Bi 6p
and Te 5p states.

The calculated band structures along some high-symmetry
lines is plotted in Fig. 8. The solid and dash lines show the
results with and without the p1/2 corrections, respectively.
When the p1/2 corrections are not included, our results are
consistent with the results of Scheidemantel et al.10 The band
gap is evaluated as 	Ee,g=0.13 eV �Scheidemantel et al.10

reported 	Ee,g=0.11 eV�, which is slightly smaller than the
zero-temperature experimental results4 �0.16 eV�. The band
edges were found in the mirror plane and off the high-
symmetry lines, yielding six highest valence bands and six
lowest conduction bands �LCBs�. The conduction band edge

�CBE� is found at �0.667, 0.571, 0.571�, close to those of
previous investigations.10,39,40 The secondary LCB edge is
found at �0.238, 0.238, 0.238� with a 10 meV higher energy.
The valence band edge �VBE� is also found at �0.667, 0.571,
0.571�, the same � position of the LCB edge. This result is
close to �0.652, 0.579, 0.579� reported by Scheidemantel et
al.,10 but different from �0.546, 0.383, 0.383� found by Youn
and Freeman39 and �0.555, 0.397, 0.397� by Kim et al.40

These comparisons are listed in Table IV.
As shown in Fig. 8, the addition of p1/2 lowers the CBE

but elevates the VBE, resulting in a decrease in 	Ee,g from
0.13 to 0.07 eV. The positions of the band edges are still off
the high-symmetry lines. The CBE remains at the same po-
sition �0.667, 0.571, 0.571�, but VBE shifts to �0.571, 0.571,
0.429�. Figure 8 also illustrates this shift.

The effective masses of electrons and holes for a single
valley near the band edge m

i,e,o
* = �m

i,e,o,xx
* m

i,e,o,yy
* m

i,e,o,zz
* �1/3

�i=e ,h�, where m
i,e,o,kl
* −1

=�−2��2Ee /��k��l�, were calculated
by choosing a small region around the band extrema. As
shown in Table IV, the addition of the p1/2 corrections sig-
nificantly reduces m

e,e,o
* and m

h,e,o
* . Figure 9�a� also shows

that the addition of the p1/2 corrections lowers the slope of
the electron density of states near the band edge. The band
structure without the p1/2 corrections seems to agree better
with the experiments.4,8,9

The total electron density of states De with and without
the p1/2 corrections are shown in Fig. 9�a�. It is apparent that
De of both the valence bands and conduction bands are non-
parabolic. However, we find that the Kane band structure
model,41 with 	Ee,g and m

i,e,o
* calculated from WIEN2K �listed

in Table IV�, gives a good approximation for De near both
the conduction and valence band edges.

Many semiconductors with narrow band gap exhibit sig-
nificant nonparabolicity of their energy bands. The two-band
Kane model,41 which has been used successfully to describe
many real narrow gap materials,7 was adopted to account for
theoretical calculations of transport coefficients. The Kane
model assumes that the band extrema for the conduction and
valence bands are located at the same � point. The energy
separation from other bands is greater than the main energy
gap, and the momentum operator has nonzero matrix ele-
ments between the states corresponding to the extremal
points.42 The dispersion relation of the bands of a valley is of
the form

Bi2Te3

a Г Z F L

EF

E e
(e
V
)

0.0

1.0

2.0

-1.0

-2.0

FIG. 8. �Color online� Electronic band structure of Bi2Te3 along
the high-symmetry lines with spin-orbit coupling. The solid and
dashed lines are for the results with and without the p1/2 corrections
included.

TABLE IV. Comparison of the calculated CBE, VBE, and the corresponding effective masses m
i,e,o
*

= �m
i,e,o,xx
* m

i,e,o,yy
* m

i,e,o,zz
* �1/3 at the band edges, with the available results �Refs. 10 and 38–40�.

Reference
	Ee,g

�eV� CBE VBE m
e,e,o
* m

h,e,o
*

Youn and Freeman �Ref. 39� 0.06 �0.663, 0.568, 0.568� �0.546, 0.383, 0.383�
Larson �Ref. 38� 0.05 �0.381, 0.5, 0.5� �0.546, 0.383, 0.383�
Scheidemantel et al. �Ref. 10�. 0.11 �0.663, 0.568, 0.568� �0.652, 0.579, 0.579�
Kim et al. �Ref. 40� 0.154 �0.646, 0.549, 0.549� �0.555, 0.397, 0.397� 0.07 0.11

Experiment �Refs. 4, 8, and 9� 0.16 0.07 0.09

This study �no p1/2 correction� 0.13 �0.667, 0.571, 0.571� �0.667, 0.571, 0.571� 0.06 0.08

This study �with p1/2 correction� 0.07 �0.667, 0.571, 0.571� �0.571, 0.571, 0.429� 0.02 0.03
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Ee�1 +
Ee

	Ee,g
� =

�2�2

2mi,e,o
, �25�

where mi,e,o is the density of state effective mass at the band
edge, 	Ee,g is the energy gap, and � is the wave vector. Note
that here Ee is measured from the band edge. Then, the den-
sity of states De can be explicitly written as

De�E� =
21/2Nme,e,o

3/2

�2�3 Ee
1/2�1 +

Ee

	Ee,g
�1/2�1 + 2

Ee

	Ee,g
� .

�26�

Here, N is the multiplicity of the valleys. However, for
Bi2Te3, it is De calculated by the Kane model using N=12
instead of N=6 that can match the results near the band edge
from WIEN2K �shown in Fig. 9�a��. This is believed to result
from the secondary band edges, of which the energy only
slightly differs from that of the band edges. This also leads to
the total effective masses me,e=N2/3me,e,o=0.31me and mh,e
=0.42me �me is the mass of a free electron�, which agree well
with me,e=0.32me and mh,e=0.46me measured by Harman et
al.43 Also note that the energy regime in which the Kane
model can provide a good approximation for De is within

0.1 eV around the band edges. Since only the states with an
energy within 3kBT about the chemical potential are impor-
tant for the transport properties, the Kane model is believed
to be a good approximation for De over a wide temperature
range.

The total density of states without the p1/2 corrections for
each species �a product of the partial De of each species and
its multiplicity� is shown in Fig. 9�b�. For a comparison of
the contributions of different orbitals, the orbital-
decomposed De �without the p1/2 corrections� are also shown
in Fig. 9�c�.

As shown in Fig. 9�b�, for the valence bands, Te1 atoms
contribute the most to the electronic density of states De near
the band edge, while the contributions from Bi and Te2 at-
oms are less and nearly the same. This indicates that the Te1
atoms are probably going to lose electrons and be a donor in
the structure. In contrast, for the conduction bands, the Bi
atoms contribute the most to the density of states near the
band edge, indicating that they are probably going to receive
an electron and be an acceptor. Note that the contributions
from Te1 atoms are only slightly less than those from the Bi
atoms. This is consistent with the slightly ioniclike bond be-
tween the Bi and Te1 atoms. Te2 atoms contribute the least to
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the density of states at both the valence and conduction band
edges, indicating that they are relatively inert in determining
the electronic transport properties of Bi2Te3. Figure 9�c�
shows that for Te1 and Te2 atoms, p-type orbitals predomi-
nate in both valence and conduction bands. Bi atoms, how-
ever, have a strong s+ p orbital contribution at the valence
band edge, but the wave function at the conduction band
edge is mainly p type. Considering the layer sequence Te1-
Bi-Te2-Bi-Te1, it seems that the bonds between the nearest-
neighboring atoms in each quintuple layer are primarily the
pp� interactions, as suggested by Mishra et al.44

B. Chemical potential

In a thermal equilibrium system, chemical potential � is
an essential parameter to describe the equilibrium distribu-
tion of carriers and their concentrations. All the electronic
transport coefficients, in fact, are functions of the band struc-
ture Ee���, �, and temperature.

Generally, � can be determined from

nd,h − nd,e = nh + nh,b − ne − ne,b, �27�

where nd,h and nd,e are the concentrations of acceptors and
donors, nh is the hole concentration, nh,b is the concentration
of holes bound on the acceptors, ne is the electron concen-
tration, and ne,b is the concentration of electrons bound on
the donors. For modest doped semiconductors, nh,b and ne,b
are normally negligible at normal and high temperatures
��100 K�. Therefore, we can rewrite Eq. �27� as

nd,h − nd,e = �
−�

0

De�Ee�
1

e��−Ee�/kBT + 1
dEe

− �
	Ee,g

�

De�Ee�
1

e�Ee−��/kBT + 1
dEe. �28�

Given nd,h−nd,e and using the De calculated by the Kane
model, we obtain the carrier concentrations and the chemical
potentials at each temperature point. Figure 10 shows the
temperature dependence of the calculated carrier concentra-
tions and chemical potentials, compared with the experimen-
tal results45 for p-type Bi2Te3 single crystals, where nd,h
−nd,e=1.1
1019 1 /cm3. Both a constant 	Ee,g and a
temperature-dependent 	Ee,g�T� were adopted in the calcu-
lation. As shown in Fig. 10, a constant 	Ee,g gives a much
lower carrier concentration compared to the experiments45 at
high temperatures �T�300 K� when the thermal excitation
of carriers becomes important. A good overall agreement can
only be achieved by using a temperature-dependent band gap
	Ee,g=0.13–1.08
10−4T. The different 	Ee,g produce two
chemical potential � curves. The deviation between them is
small under 200 K but becomes more prominent when T
�250 K, especially when T�500 K. Below 300 K, � re-
sides within the valence band, and the sample is in the ex-
trinsic regime. For T�300 K, increasingly more carriers are
thermally excited, leading � into the band gap, and the crys-
tal becomes intrinsic. At even higher temperatures, � tends
to move toward the middle of the band gap. In the following
electrical transport calculations, we use � calculated from

Eq. �28� with the temperature-dependent 	Ee,g by shifting
the conduction band.

C. Relaxation-time models

The relaxation-time models simplify the calculation of
BTE but condense all the complexities into the relaxation
time �e. In principle, the scattering relaxation time can be
obtained using the Fermi golden rule and the perturbation
theory. The scattering of electrons is related to the perturba-
tion of the Hamiltonian for an electron,36,46

H = −
�2

2me
�2 +

ec
2

4��o
� nege�r��

�r − r��
dr� + �ec + �ext + H�,

�29�

H� = He−p,A� + He−p,O� + He−p,PO� + He−v,d� + He−v,C� + ¯

= �d,a
�d

�r
+ �d,od −

ecqe

Vo
�
�p

�p

�p
2 + �−2 �iQ�p

ei�p·r� + �v,c

+
Zec

2

4��r
e−r/� + ¯ �30�

where ge�r� is the electron radial distribution function, �ec is
the exchange-autocorrelation energy, �ext is the external po-
tential excluding the perturbation, H� is the perturbation
Hamiltonian due to scatterings, He−p,A� , He−p,O� , He−p,PO� ,
He−v,d� , and He−v,C� are the perturbation Hamiltonian for the
acoustic phonon scattering, nonpolar-optical phonon scatter-
ing, polar-optical phonon scattering, short-range scattering
by impurity, and scattering by Coulomb potential, respec-
tively. Here, �d,a and �d,o are the deformation potentials for
the acoustic and optical phonons, qe is the effective charge,
and �v,c is the scattering potential of impurity. d
=N−1/2��p

Q�p
s�p

exp�i�p ·R� �N is the number of unit cells
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FIG. 10. �Color online� Temperature dependence of the calcu-
lated carrier concentrations and chemical potentials, compared with
the experimental results �Ref. 45�. Both a constant band gap
	Ee,g=0.13 eV and a temperature-dependent band gap 	Ee,g

=0.13–1.08
10−4T were used.
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and s�p
is the polarization vector� is the normal coordinate

form of lattice displacement, �p is the phonon wave vector,
Q�p

is the normal coordinate, � is the screening length, and
Zec is the effective charge of impurity.

The electron relaxation time �e for mode � can be repre-
sented as46

1

�e���
= �

i

1

�e,i���
=� d��

�2��3 
̇�,��,i�1 −
g��

g�

f�
o

f��
o � ,

�31�

where f�
o is the carrier equilibrium distribution, g�= f�− f�

o is
the perturbation of the distribution, and 
̇�,��,i is the transi-
tion rate from state � to �� by the ith scattering, which can,
in turn, be given by the Fermi golden rule as46


̇�,��,i =
2�

�
��Ee − Ee������M�,��,i�2,

M�,��,i = ����Hi���
 =� �†���,r�Hi����,r�dr , �32�

where Hi� is the perturbation Hamiltonian for the scattering
mechanism i and ��� ,r� is the wave function for mode �.
The Bloch wave function corresponding to the electron wave
vector � can be written as

����,r� =
1

V1/2�
o

CJ��
G

CG
�ei��+G�·r, �33�

where V is the volume, C and C� are coefficients, and the
subscripts J and G denote the different orbitals and recipro-
cal lattice vectors, respectively. Therefore,

M�,�� =
1

V1/2�
J�

�
J

CJ�
�†CJ��

G�
�
G

ei�−��−G��·rH�ei��+G�·r.

�34�

If the wave function and the perturbation potential can be
obtained from the first-principles calculation, �e,i can be di-
rectly determined. This calculation is very challenging, and
here we just introduce an analytical relaxation-time model,
which is also based on the Fermi golden rule and incorpo-
rates the nonparabolic Kane model for energy dispersion.

Five common electron scattering mechanisms are consid-
ered in this work, namely, the deformation potential of the
acoustic phonons �e−p,A, deformation potential of the optical
phonons �e−p,O, polar scattering by the optical phonons
�e−p,PO, short-range deformation potential of vacancies �e−v,d,
and Coulomb potential of vacancies �e−v,C. According to the
Matthiessen rule, the total scattering relaxation time �e is
expressed as

1

�e
=

1

�e−p,A
+

1

�e−p,O
+

1

�e−p,PO
+

1

�e−v,d
+

1

�e−v,C
. �35�

Using the Kane model, the expressions for the different
scattering mechanisms are given as follows.6

�i� Scattering by deformation potential of acoustic
phonons �e−p,A. The relaxation time for electrons dispersed

on the deformational potential of acoustic phonons, when
using the Kane model of dispersion and assuming an elastic
procedure, can be given as

�e−p,A =

��e−p,A�o�Ee +
Ee

2

	Ee,g
�−1/2

�1 + 2
Ee

	Ee,g
���1 − A�2 − B�

,

A �

Ee

	Ee,g
�1 − aA�

�1 + 2
Ee

	Ee,g
� , aA =

�d,A,v

�d,A,c
,

B �
8

Ee

	Ee,g
�1 +

Ee

	Ee,g
�aA

3�1 + 2
Ee

	Ee,g
�2 ,

��e−p,A�o �
2��4Cl

�d,a,c
2 kBT�2me,e,o�3/2 , �36�

where �d,A,c is the acoustic deformation potential coupling
constant for the conduction band, Cl is the combination of
elastic constants, aA is the ratio of the acoustic deformation
potential coupling constants for the valence and conduction
bands, and me,e,o is the density of state effective mass for a
single ellipsoid.

�ii� Scattering by deformation potential of optical
phonons �e−p,O

�e−p,O =

��e−p,O�o�Ee +
Ee

2

	Ee,g
�−1/2

�1 + 2
Ee

	Ee,g
���1 − A�2 − B�

,

A �

Ee

	Ee,g
�1 − aO�

�1 + 2
Ee

	Ee,g
� , aO =

�d,O,v�

�d,O,c�
,

B �
8

Ee

	Ee,g
�1 + Ee/	Ee,g�aO

3�1 + 2
Ee

	Ee,g
�2 ,

��e−p,O�o �
2�2a2����p,O�2

��d,o,c�2 kBT�2me,e,o�3/2 , �37�

where a is the lattice constant, � is the density, �p,O is the
frequency of the optical phonons, aO is the ratio of the opti-
cal deformation potential coupling constants for valence and
conduction bands.

�iii� Scattering by polar-optical phonons �e−p,PO. In a
simple isotropic parabolic model, the relaxation time for po-
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lar longitudinal optical phonons has the form

�e−p,PO
−1 �

1

ue�
2�

0

2�

qdq , �38�

where ue is the velocity of electrons. When the integral takes
into account all phonons, we have

�e−p,PO =
�2ue

2kBTec
2���o�e,s�−1 − ��o�e,��−1�

. �39�

Inclusion of nonparabolicity and screening effects will lead
to

�e−p,PO

=

�2�Ee +
Ee

2

	Ee,g
�1/2

F−1

ec
2�2me,e,o�1/2kBT���o�e,s�−1 − ��o�e,��−1��1 + 2

Ee

	Ee,g
� ,

F � 1 − � ln�1 + �−1� −

2
Ee

	Ee,g
�1 +

Ee

	Ee,g
�

�1 + 2
Ee

	Ee,g
�2


�1 − 2� + 2�2 ln�1 + �−1�� ,

� � �2��o�−2, �40�

where �e,s and �e,� are the static and high-frequency relative
permitivities, � is the carrier wave vector, and �o is the
screening length of the optical phonons.

�iv� Scattering by short-range deformation potential of
vacancies �e−v,d. �e−v,d also has a form similar to the relax-
ation time of electron-acoustic phonon scattering due to a
similar deformation potential, which is

�e−v,d =

��e−v,d�o�Ee +
Ee

2

	Ee,g
�−1/2

�1 + 2
Ee

	Ee,g
���1 − A�2 − B�

,

A �

Ee

	Ee,g
�1 − av�

�1 + 2
Ee

	Ee,g
� , av =

�v,v�

�v,c�
,

B �
8

Ee

	Ee,g
�1 + Ee/	Ee,g�av

3�1 + 2
Ee

	Ee,g
�2 ,

��e−v,d�o �
��4

�v,c�2 me,e,o�2me,e,o�1/2nv
, �41�

where nv is the vacancy density and av is the ratio of the
short-range deformation potential coupling constants of va-
cancies for valence and conduction bands.

�v� Scattering by Coulomb potential of vacancies �e−v,C

�e−v,C =

�s
2�2me,e,o�1/2�Ee +

Ee
2

	Ee,g
�3/2

��zec
2�2nv�ln�1 + �� − �/�1 + ����1 + 2

Ee

	Ee,g
� ,

� � �2��v�2, �42�

where zec is the vacancy charge and �v is the screening ra-
dius of the vacancy potential and is given as

�v
−2 =

4�ec
2

�s
De���, � = EF,

De��� �
21/2�me,e,o�3/2

�2�3 �� +
�2

	Ee,g
�1/2�1 + 2

�

	Ee,g
� ,

�43�

where De��� is actually the density of states at the Fermi
level.

Figure 11 shows the temperature dependence of the cal-
culated average relaxation times described above. The pa-
rameters used in the calculation are listed in Table V. Some
parameters, e.g., the deformation potentials, are obtained by
fitting the electrical conductivity with experimental results at
100 K. Overall, the scatterings by acoustic and optical
phonons dominate the electrical transport of Bi2Te3. On the
other hand ���e−v,d

 and ���e−v,C

 are orders of magnitudes
larger than ���e−p,A

 and ���e−p,O

. Therefore, the scatterings
by the short-range deformation potential of vacancies and
Coulomb potentials are unimportant for the electrical trans-
port of Bi2Te3. Note that ���e−p,PO

 is comparable with
���e−p,A

 and ���e−p,O

. Therefore, the polar scattering by
optical phonons is also important.
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FIG. 11. �Color online� Variation of calculated average electron
relaxation times for Bi2Te3 with respect to temperature using the
Kane band model for energy dispersion.
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D. Seebeck coefficient

Figure 12 shows the variation of calculated �S,� of Bi2Te3
with temperature using Eq. �24�. The calculation was carried
out using BOLTZTRAP, a software package adopting BTEs.
Both the energy-dependent relaxation-time models �Sec.
III E� and the constant relaxation-time model were used.
We modified the BOLTZTRAP code and incorporated the
relaxation-time model into the integration since BOLTZTRAP

assumes a constant relaxation time. The corresponding Fermi
energy at each temperature is determined by Eq. �28� along
with the Kane band model for De. To incorporate the tem-
perature dependence of the band structure, we assume that
the band structure does not change with temperature and
shifts the conduction band in the calculation to include the
temperature dependence of the band gap 	Ee,g. Figure 12
shows that the constant 	Ee,g leads to much higher values for
T�300 K �intrinsic regime�, while results calculated with

the temperature-dependent 	Ee,g=0.13–1.08
10−4T agree
quite well with the experimental results. However, in the
extrinsic regime �T�300 K�, there is only minor difference
between the results with the two different settings for 	Ee,g.
As shown in Fig. 12, with the same temperature-dependent
	Ee,g=0.13–1.08
10−4T eV, the two relaxation-time mod-
els give very similar results in the extrinsic regime since one
kind of carriers dominates the electrical transport. However,
some deviation appears in the intrinsic regime, where the
concentrations of the holes and electrons become compa-
rable, and it increases with increasing temperature. This phe-
nomenon indicates that the temperature dependences of the
mobilities of holes and electrons are different.

The band structure calculated with the experimental lat-
tice parameters at 300 K was used in the above calculations
for �S. Temperature changes not only the carrier concentra-
tions but also the lattice parameters. However, the band
structure calculations adopting the lattice parameters under
different temperatures show that the thermal expansion has
negligible effects on the band structure. The change of lattice
parameters from 0 to 300 K only results in a less than 2%
change in the band gap. Compared with the actual tempera-
ture dependence of band gap,47 it seems that the temperature
variation of the band gap is mainly due to lattice vibration.

Figure 13 shows the variation of �S along the � and �
directions, with respect to the chemical potential �, at
300 K. Apparently, the two curves are very similar, indicat-
ing the isotropy of �S. Figure 13 shows that for p-type
Bi2Te3, the �S peaks along the � and � directions almost
overlap. However, for n-type Bi2Te3, the absolute peak value
�S along the � direction is larger than that along the � direc-
tion, though the peak positions are identical. In Fig. 13, �0 is
the chemical potential value at which �S=0. It is useful to
rewrite the relation for �S in Eq. �24� as

�S =
kB

ec

�Ee − �
�e�Ee,��

kBT
,

TABLE V. Parameters used in the relaxation-time models for
Bi2Te3, from fit to experimental results �Ref. 45�.

Parameter Magnitude Parameter Magnitude

mh,e,o /me 0.08 me,e,o /me 0.06

nv �1 /m3� 1.04
1025 � �kg /m3� 7.86
103

�e,o 400 �e,� 69.8

Cl �N /m2� 0.71
1011 ��o �eV� 0.0061

z 0.1 �d,A,c �eV� 35

�d,O,c �eV� 40 �v,c� �J m3� 1.2
10−46

aA ,aO ,av 1.0 a �Å� 10.45

	Ee,g �eV� 0.13–1.08
10−4T
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FIG. 12. �Color online� Variation of the calculated Seebeck co-
efficient for p-type Bi2Te3 with respect to temperature, compared
with the available experimental results �Ref. 45�. Both a
temperature-dependent band gap 	Ee,g=0.13–1.08
10−4T eV and
a constant 	Ee,g=0.13 eV are used. Also shown are the predictions
using the energy-dependent relaxation times and the constant
relaxation-time model.
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FIG. 13. �Color online� Variation of the calculated Seebeck co-
efficient of Bi2Te3 at T=300 K with respect to the chemical poten-
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�Ee − �
�e�Ee,�� =
��e�Ee,���Ee − ��dEe

��e�Ee,��dEe
. �44�

Here, �Ee−�
�e�Ee,�� is the �e�Ee ,��-averaged energy devia-
tion from the chemical potential. Then, we have

�0 = �Ee
�e�Ee,�0�, �45�

which is the �e�Ee�-averaged energy close to the middle of
the band gap. Therefore,

�S =
kB

ec

��Ee
�e�Ee,�� − �Ee
�e�Ee,�0�� − �� − �0�

kBT
. �46�

�Ee
�e�Ee,�� has a simple form if the nondegenerate approxi-
mation may be used, that is,

�Ee
�e�Ee,�� �
�e,e	Ee,g

�e,e + �e,h
=

1

1 + be−2�/�kBT�	Ee,g, �47�

where �e,e and �e,h are the electrical conductivity contributed
by electrons and holes, b= ��h /�e��me,h /me,e�3/2 ��h and �e

are the mobilities of electrons and holes�, and 	Ee=�
−	Ee,g /2 is the separation of the chemical potential above
the middle of the band gap. Apparently, for semiconductors
with a large band gap �e.g., 	Ee,g�10kBT�, the absolute
value of the maximum �S can be estimated as

��S,max� =
kB

�ec�
	Ee,g

2kBT
. �48�

For small 2	Ee /kBT, we have

�Ee
�e�Ee,�� �
	Ee,g

1 + b
	1 +

2b	Ee/�kBT�
1 + b


 . �49�

Therefore,

�S �
kB

ec

	 2b	Ee,g

�1 + b�2kBT
− 1
�� − �0�

kBT
. �50�

For narrow band-gap semiconductors, as shown in Fig.
13, Eq. �50� is a good approximation for �S when ��−�0�
�	Ee,g /2. When � moves toward the band edge, the effects
of opposite charges become smaller; when � moves further
into the band edge, �Ee
�e�Ee,�� will become closer to �.
Therefore, �S will achieve the maximum near the band edge,
and the maximum value can be estimated from Eq. �50�.
Assuming that b=1 and the maximum is achieved at the
band edge for Bi2Te3 at 300 K, ��S�max�320 �V /K, close to
the maximum in Fig. 13.

E. Electrical conductivity and electric thermal conductivity

Figure 14 shows the calculated electrical conductivity of
Bi2Te3 along the � and � directions, wherein the Kane band
model based relaxation times are used. The temperature-
dependent band gap 	Ee,g=0.13–1.08
10−4T eV and the
corresponding chemical potential calculated in Sec. III B are
adopted in the calculation. The parameters for the relaxation-
time models are listed in Table V. Below 300 K, the ratio

�e,� /�e,� is around 2.2 and is almost temperature indepen-
dent. However, above 300 K, �e,� /�e,� increases with in-
creasing temperature. From the results shown in Fig. 14, this
is because �e,� changes much faster than �e,� at high tem-
peratures. Note that the calculated �e,� /�e,� is lower than the
experimental values �around 2.95 �Ref. 48��. The deviation is
caused probably by neglecting the directional dependence of
the effective masses.

We also used a constant band gap 	Ee,g=0.13 eV for the
calculation of �e using the above energy-dependent
relaxation-time models. The same parameters in Table V are
used, and the results are also plotted in Fig. 14. Below
300 K, the �e,� calculated with a constant 	Ee,g is fairly
close to those results with a temperature-dependent 	Ee,g�T�.
However, in the intrinsic regime, the larger band gap sup-
presses the thermal excitation of carriers and thus leads to
lower �e values. Note that with a constant 	Ee,g, �e,� contin-
ues to decay without any rebound shown in the experimental
results. However, a temperature-dependent 	Ee,g�T� yields a
much better agreement with the experiments at high tem-
peratures, indicating that the temperature dependence of the
band gap is important in predicting the temperature depen-
dence of the electrical conductivity.

Traditionally, the Wiedemann-Franz Law, ke=NL�eT,
where NL is the Lorenz number, is used to calculate the elec-
tric thermal conductivity ke on the basis of �e. However, for
semiconductors, NL may not be the values used for metals
�NL,o= ��2 /3�kB

2 /ec
2�, especially when the chemical potential

is near the center of the band gap.49 Figure 15�a� shows the
variation of the directly calculated Lorenz number NL �scaled
with NL,o� for Bi2Te3 �along � and �� at 300 K, with respect
to the chemical potential. The results are similar to those
found by Chaput et al.49 for doped skutterudites. When the
sample is heavily doped �the chemical potential is deep in-
side the valence or conduction band�, NL /NL,o is close to 1.0.
However, for intermediate doping, NL /NL,o can be smaller
than 1.0, and the minimum is around 0.7. For small doping
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FIG. 14. �Color online� Variation of calculated directional elec-
trical conductivity for Bi2Te3 with respect to temperature using the
Kane band model and energy-dependent relaxation times, and com-
parison with the available experimental results �Ref. 45�.
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concentrations or intrinsic regime, NL /NL,o may be much
larger than 1.0. Figure 15�a� also shows that the constant
relaxation-time model will lead to a larger NL, compared to
that for the energy-dependent relaxation-time model dis-
cussed above. For both relaxation-time models, NL along the
� direction is slightly larger than that along the � direction.
Figure 15�b� shows the temperature dependence of the elec-
tric thermal conductivity calculated according to Eq. �24�
and that calculated from NL,o�eT. The results from Eq. �24�
show that ke for both directions increase with increasing tem-
perature, while NL,o�eT results show valleys near the room
temperature. Due to the significant changes of NL in the in-
trinsic regime, NL,o�eT underestimates ke at high tempera-
tures.

F. Figure of merit

Figure 16 shows the variation of the figure of merit ZT for
the p-type Bi2Te3 specimen of experiment45 along the � and
� directions, with respect to temperature. The lower two

curves are based on the directly �MD� calculated kp. Since kp
and �e are very sensitive to defects, which are always present
in fabricated specimens, for comparison between the calcu-
lated and measured ZT, we used a modified kp, and the re-
sults are shown with the top two curves. Due to the difficulty
in modeling various defects, the modified kp was obtained by
fitting the total thermal conductivity to the experimental
results45 at 300 K and then by using the 1 /T law at other
temperatures. The experimental results are also shown in Fig.
16. The ZT with a modified kp is higher than experimental
results above 200 K, mainly due to the overestimation of �e.
The calculated ZT reaches its maximum at around 250 K. ZT
along the � direction is higher than that along the � direction
between 200 and 400 K due to the larger ratio �e,� /�e,� com-
pared to kp,� /kp,�. Note that the experimental �e,� /�e,� is
larger than the calculated results �discussed above�, so the
difference in the figure of merits along the � and � direction
is expected to be even larger.

IV. SUMMARY AND CONCLUSION

The interatomic potentials for Bi2Te3 have been devel-
oped, and the calculated elastic constants and thermal expan-
sion coefficients agree well with the experimental data, indi-
cating that the proposed force field is suitable in describing
both the harmonic and anharmonic behaviors of Bi2Te3. The
interaction between two Te1 atoms in the neighboring layers
is a mixture of the electrostatic interaction and the van der
Waals interaction and behaves like an ionic bond. The force
constant difference between the Te1-Te1 and Te2-Bi bonds
leads to a phonon band gap near 2.5 THz. There is only a
small difference between the in-plane and cross-plane vibra-
tions, and no significant two-dimensional elastic behavior
has been found in this layered structure. However, the aniso-
tropy in the polarized Grüneisen parameter shows much
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FIG. 15. �Color online� �a� Variation of the calculated scaled
Lorenz number for Bi2Te3 �along � and �� with respect to the
chemical potential. Both the constant relaxation-time model and the
energy-dependent relaxation-time model �with the Kane band dis-
persion� results are shown. �b� Variation of the calculated ke along
the � and � directions with respect to temperature. The results cal-
culated using the constant NL,o, i.e., NL,o�eT, are also shown.
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stronger anharmonicity along the cross-plane direction,
which is mainly due to the high anharmonic Te1-Te1 inter-
action.

The temperature dependence of the in-plane and cross-
plane lattice thermal conductivities kp,A,� and kp,A,� has been
calculated in a temperature range from 150 to 450 K. The
ratio kp,A,� /kp,A,� varies from 1.55 to 2.17 in this temperature
regime. Since the elastic properties along the two directions
are nearly the same, the difference between kp,A,� and kp,A,�
is believed to be mainly due to the different inharmonicity
along the two directions. The calculated in-plane thermal
conductivity roughly follows the 1 /T law, while the calcu-
lated cross-plane lattice thermal conductivity seems to have a
slightly stronger temperature dependence �i.e., 1 /T1.23�,
which may be due to the larger thermal expansion effects
along that direction. The decomposition of the lattice thermal
conductivity shows that the long-range acoustic phonons
dominate the heat transfer in both the in-plane and cross-
plane directions. The contribution from the long-range
acoustic phonons kp,A,lg has a strong temperature depen-
dence; in contrast, the contribution from the short-range
acoustic phonons kp,A,sh and that from the optical phonons
kp,O are also temperature-independent. Also, at each tempera-
ture point, kp,A,sh and kp,O along the in-plane and cross-plane
directions are almost identical. Therefore, kp,A,sh and kp,O are
not sensitive to the inharmonicity. The sum of kp,A,sh and kp,O
provides a lower limit for the doped bulk Bi2Te3, which is
about 0.2 W /m K at 300 K. By using direction-dependent
TD,� and 
G, the Slack model was also extended for aniso-
tropic materials. The extended Slack model gives a good
estimation for both the in-plane and cross-plane lattice ther-
mal conductivities, indicating that the phonon transport
along a given direction is only affected by the elastic and
inharmonic properties along that direction.

We have also calculated the temperature dependence of
�S, �e, and ke over the temperature range from 100 to 500 K.
These calculations are based on the band structure, �, and �e.

The Kane band model is found to be appropriate in describ-
ing the nonparabolicity of the Bi2Te3 band structure. The
fitting with the carrier concentration and � shows that the
temperature dependence of the band gap is important to give
a good prediction. The thermal expansion has negligible ef-
fects on the relationship between �S and �; therefore, the
effects of temperature on �S are mainly through changing the
distribution function and �. Both the constant relaxation-
time model and the analytic relaxation-time model with the
nonparabolic Kane model for energy dispersion have been
used in the calculations for �S. The results show that �S is
sensitive to the temperature dependence of the band gap and
the relaxation time models in the intrinsic regime.

The fitting for �e using the relaxation-time model also
shows that the polar scattering by optical phonons and the
scattering by the deformation potential of acoustic and opti-
cal phonons predominate the electron transport in Bi2Te3.
The scatterings by the short-range deformation potential of
vacancies and the Coulomb potentials are negligible. The
comparison of the temperature dependence of different scat-
tering mechanisms also shows that the temperature depen-
dence of the band gap is important in describing the tempera-
ture dependence of �e. It is also found that the Lorenz
number can be smaller than the value for metals for interme-
diate doping and will become much larger in the intrinsic
regime. In the relaxation-time models used, some parameters
are found by fitting to the experimental data on �e. Further
work will use the first-principles methods �e.g., Eq. �32�� to
calculate the scattering rates by acoustic and optical
phonons.
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